Evaluation of the environmental impact of using CO2 generated by fixed sources to replace H2SO4 to neutralize textile wastewater
DOI:
https://doi.org/10.54943/ricci.v4i2.513Keywords:
Climate change, carbon dioxide, neutralizationAbstract
The global climate is changing due to greenhouse gas emissions. The CO2 from fixed sources in the processes linked to the “Desembarco del Granma” textile factory negatively impacts the industry and its surrounding community. To mitigate the impact of this gas, its use in the neutralization of wastewater is proposed. The objective of this work is to evaluate the environmental impact caused by the use of CO2 generated by fixed sources in the replacement of sulfuric acid to neutralize textile wastewater. Sima Pro 9.0.0.49 software was implemented. The functional unit was the treatment of 60 m3/h of wastewater. The limits of the system were those that frame the two fixed sources of gas emissions (steam generator and oil heater) and the first section of the waste liquid treatment plant that includes neutralization. To quantify the amounts of CO2 and sulfuric acid, mass balances were used. The carbon footprint is 5,113.96 kg CO2 equivalent for the current process and 1,112.82 kg CO2 equivalent when CO2 is used to replace H2SO4 in the neutralization process, representing a 78,24 % decrease. The environmental feasibility of replacing sulfuric acid with CO2 is demonstrated since there will be a decrease of 69,1 points for the total process in terms of damage categories and 4001,14 kg of CO2 equivalent.
Downloads
References
Arbona, M., Cabrera, I., Morales, M., y García, M. (2020). Determinación de propuesta tecnológica para reducir el impacto del material particulado generado en la textilera “Desembarco del Granma”. Centro Azúcar, 47(3), (pp. 58-69), http://scielo.sld.cu/pdf/caz/v47n3/2223-4861-caz-47-03-58.pdf
Espíndola, C. y Valderrama, J. (2012). Huella del Carbono. Parte 1: Conceptos, Métodos de Estimación y Complejidades Metodológicas. Información Tecnológica, 23(1), (pp. 163-176).
Liu, Q., Wu, L., Jackstell, R., y Beller, M. (2015). Using carbon dioxide as a building block in organic synthesis. Nature Communications, 6, (pp. 1-15), https://www.nature.com/articles/ncomms6933
López, A. (2013). Absorción de dióxido de carbono, a elevadas presiones parciales, por disoluciones acuosas de mezclas binarias de alcanolaminas. (Tesis doctoral), Universidad de Jaén, https://ruja.ujaen.es/bitstream/10953/545/1/9788484398424.pdf
Pallé, C. (2018). El dióxido de carbono como forma sostenible de reducir el pH del agua. Tecnoagua, 34, (pp 84-88).
Pichler, T., Stoppacher, B., Kaufmann, A., Siebenhofer, M. y Kienberger, M. (2020). Continuous Neutralization of NaOH Solution with CO2 in an Internal-Loop Airlift Reactor. Chemical Engineering Technology, 44(1), (pp. 38-47).
Salas, G. y Condorhuaman, C. (2009). Huella de Carbono en la Industria Textil. Revista Peruana de Química e Ingeniería Química, 12(2), (pp. 25-28).
Schulz, K., Riebesell, U., Rost, B., Thoms, S. y Zeebe, R. (2006). Determination of the rate constants for the carbon dioxide to bicarbonate inter-conversion in pH-buffered seawater systems. Marine Chemistry, 100, (pp. 53-65).
Sosa, C. y Bolufé, J. (2019). Inventario Nacional de Gases de Efecto de Invernadero. Serie Entendiendo el Cambio Climático.
Shahabadi, M., Yerushalmi, L. y Haghighat, F. (2010). Estimation of greenhouse gas generation in wastewater treatment plants –Model development and application. Chemosphere, 78, (pp. 1085–1092).
Uibu, M., Velts, O., Trikkel, A. y Kuusik, R. (2014). Reduction of CO2 emissions by carbonation of alkaline wastewater. Air Pollution, XVI, (pp. 311-320).
Published
How to Cite
-
Abstract426
-
PDF (Español (España))340
-
HTML (Español (España))8
Issue
Section
License
Copyright (c) 2024 Mercedes Arbona, Isabel Cabrera, José Fabelo, Elena Rosa, Zuidery Macias

This work is licensed under a Creative Commons Attribution 4.0 International License.









DOI:10.54943/ricci.







