Voice controlled articulated arm for motor rehabilitation of disabled people of the upper limb

Authors

  • Hipólito Carbajal Moran Escuela Profesional de Ingeniería Electrónica, Facultad de Ingeniería Electrónica –Sistemas, Universidad Nacional de Huancavelica, Jr. Victoria Garma N° 275 y Jr. Hipólito Unanue N° 280 Huancavelica, Perú https://orcid.org/0000-0002-1661-5363

DOI:

https://doi.org/10.54943/rcsxxi.v1i1.9

Keywords:

wireless communication, voice commands, arm trajectories, motor rehabilitation

Abstract

The objective was to design an articulated arm with control of trajectory and speed by voice commands, to rehabilitate people with motor disabilities of the upper limb. The systemic method was used; voice commands were considered inputs to the system; movements of the arm link joints were considered outputs. From the tests carried out with the design, it was determined that the controller activated by voice commands allows to keep controlled the speeds of the different motors that make up the wrist, elbow and shoulder joints; With respect to the speeds, these are closely correlated, whose coefficients are greater than 0.99, which indicates that the difference between the desired speeds and those obtained have very little difference. In conclusion, an arm with articulations of three degrees of freedom was implemented, commanded by voice using pre-established codes, allowing the trajectories of the different characteristic movements of the arm to be described in a controlled manner, with displacements that generate rotation-elongation of the shoulder in the interval of 0° to 120°, elbow in the range of 0° to 120° and wrist movements from -30° to 60°; to rehabilitate people with motor disabilities of the upper limb.

Downloads

Download data is not yet available.

References

Andro4all. (2020). Versiones de Android: de la primera a la última versión de Android. https://andro4all.com/guias/android/versiones-android-historia

Becerra, A. D., Florez, J. P., Palencia, D. O., Orjuela, J., López, E. A., & Méndez, L. M. (2019). ExPro: Exoesqueleto para rehabilitación de miembro superior. Bistua: Revista de La Facultad de Ciencias Básicas, 17(3).

Carrere, M. T. A., Méndez, A. Á., & Peñaranda, Y. F. (2011). Biomecánica clínica. Biomecánica de la Extremidad Superior. Exploración del Codo. REDUCA (Enfermería, Fisioterapia y Podología), 3(4).

Cheng, O. E., & Rojas, L. F. del R. (2019). Diseño y construcción de un prototipo de exoesqueleto de rehabilitación para miembro superior.

Diaz, J. R. (2019). Discapacidad en el Perú: Un análisis de la realidad a partir de datos estadísticos. Revista Venezolana de Gerencia, 24(85), 243–263. https://doi.org/10.31876/revista.v24i85.23838

Galán, F. W. (2017). Diseño, implementación y control de un exoesqueleto para rehabilitación de extremidades superiores.

García, E. (2008). Compilador C CCS y simulador Proteus para microcontroladores Pic. Alfaomega, Marcombo.

García,R. (2020). Qué es Bluetooth: Características, protocolos, versiones y usos. https://www.adslzone.net/reportajes/tecnologia/bluetooth/

García Sancho, A. (2019). Manual para el diseño paramétrico con SolidWorks.

Lee, S. H., Park, G., Cho, D. Y., Kim, H. Y.,Lee, J.-Y., Kim, S., Park, S.-B., & Shin, J.-H. (2020). Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-58630-2

Muri, F., Carbajal, C., Pérez, E., Fernández, H., Echenique, A. M., & López, N. (2014). Diseño de un sistema de rehabilitación para miembro superior en entorno de realidad virtual. Ingeniería Biomédica,7(14). https://doi.org/10.24050/19099762.n14.2013.475

Nano, A. (2018). Arduino Nano. Obtenido de Arduino: https://store. arduino. cc/usa/arduino-nano.

Olaya, A. F. R. (2008). Sistema robótico multimodal para análisis y estudios en biomecánica, movimiento humano y control neuromotor. Madrid: Universidad Carlos III, Departamento Ingeniería de Sistemas y Automática.

Patton, E. W., Tissenbaum, M., & Harunani, F. (2019). MIT app inventor: Objectives, design, and development. In Computational thinking education(pp. 31–49). Springer, Singapore.

Sabino, M. M., & Amaral, I. S. S. (2019). Desenvolvimiento de brazo robótico para auxilio em movimentos repetitivos para reabilitação motora: estudo de caso do robô doméstico br. arm. Revista Computação Aplicada-UNG-Ser, 5(1), 5–12.

Sivakumar, A., Jain, K. A., & Maalouf, A. I. (2020). Voice Controlled Servo Motor Using an Android Application. https://doi.org/10.1109/WF-IoT48130.2020.9221333

Techlandia. (2016). Diferencias entre potenciómetros lineales y logarítmicos. https://techlandia.com/diferencias-potenciometros-lineales-logaritmicos-sobre_579328/

Velarde, A. (2015). Inclusión de las personas con discapacidades sensoriales y físicas en el mercado laboral: el caso de Lima-Perú.

Weinthal, C. P., Larrondo-Petrie, M. M., & Zapata-Rivera, L. F. (2019). Academic Integrity Assurance Methods and Tools for Laboratory Settings. 2019-Octob. https://doi.org/10.1109/FIE43999.2019.9028482

World Bank. (2015). Disability. http://www.worldbank.org/en/topic/disability/overview#1

Published

2021-01-26

How to Cite

Carbajal Moran, H. (2021). Voice controlled articulated arm for motor rehabilitation of disabled people of the upper limb. Revista De investigación científica Siglo XXI, 1(1), 40–52. https://doi.org/10.54943/rcsxxi.v1i1.9
Metrics
Views/Downloads
  • Abstract
    417
  • PDF (Español (España))
    107
  • HTML (Español (España))
    13