Treatment with Native Species of Acidic Waters from the San Antonio Mine, Huachocolpa – Huancavelica
DOI:
https://doi.org/10.54943/rcsxxi.v5i2.813Keywords:
Acid mine drainage, bioadsorption, putacca, totora reed, environmental remediationAbstract
Acid mine drainage generates severe environmental impacts due to its heavy metal content; this research evaluated the efficiency of putacca (Rumez Peruvianus) and totora (Scirpus californicus) in the bioadsorption of contaminants from the acid drainage of the San Antonio Mine, Huachocolpa, Huancavelica.
The research was experimental and applied in nature. Three bimonthly sampling events were conducted at the mine entrance and inside the mine, collecting water and plant samples. The absorbance of arsenic and antimony was measured by observing the interaction of the metals with the roots and stems of the selected plants.
The results indicated that totora reed exhibited an absorbance of -0.065 mg/L for arsenic and -0.060 mg/L for antimony, values higher than those obtained with putacca (0.048 mg/L and -0.024 mg/L, respectively). This demonstrates that totora reed is more efficient at capturing heavy metals.
It is concluded that the use of native species such as totora reed is a viable strategy for mitigating water pollution in mining ecosystems. This finding opens opportunities for its application in environmental remediation projects.
Downloads
References
Akinbile, B. J., & Mbohwa, C. (2025). Incorporating hyperaccumulating plants in phytomining, remediation and resource recovery: Recent trends in the African region – A review. RSC Sustainability, 3(4), 1652-1671. https://doi.org/10.1039/D5SU00021A.
Azizi, M., Faz, A., Zornoza, R., Martínez-Martínez, S., & Acosta, J. A. (2023). Phytoremediation potential of native plant species in mine soils polluted by metalloids and rare earth elements. Plants, 12(6), 1219. https://doi.org/10.3390/plants12061219.
Chamba-Eras, I., Griffith, D. M., Kalinhoff, C., Ramírez, J., & Gázquez, M. J. (2022). Native hyperaccumulator plants with differential phytoremediation potential in an artisanal gold mine of the Ecuadorian Amazon. Plants, 11(9), 1186. https://doi.org/10.3390/plants11091186.
González, R., López, J., & Martínez, C. (2018). Fitorremediación y bioadsorción de metales pesados en humedales altoandinos. Revista de Ciencias Ambientales, 34(2), 45-60.
Inga Blancas, J. (2011). Tratamiento de efluentes por el método de pantanos artificiales (Wetland) [Tesis de licenciatura, Universidad Nacional Mayor de San Marcos]. Repositorio Institucional de la UNMSM.
Peña-Salamanca, C. (2013). Bioprospección de Heliconia psittacorum en la fitorremediación de aguas contaminadas. Revista de Ciencias Ambientales, 29(3), 45-58.
Salt, D. E., Blaylock, M., Kumar, N., & Raskin, I. (1995). Phytoextraction: Using plants to remove pollutants from the environment. Environmental Science & Technology, 29(5), 1232-1238.
Weibel, L. (2023). Efectos del drenaje ácido en depósitos cupríferos. Instituto de Estudios Geoquímicos. https://www.institutogeoquimica.org/weibel 2023.
Weibel, L. (2023). Formación y efectos del drenaje ácido en ambientes mineros. Revista Geoquímica Aplicada, 35(2), 45-60.
Zegarra, A. (2014). Acumulación de metales pesados en plantas nativas de humedales altoandinos en Anchas, Perú. Revista de Ciencias Ambientales, 30(2), 45-60.
Published
How to Cite
-
Abstract0
-
PDF (Español (España))0
-
HTML (Español (España))0
Issue
Section
License
Copyright (c) 2026 Luis Quispeayala Armas, Luz Marina Acharte Lume, Jeny Maribel Asto Gonzales

This work is licensed under a Creative Commons Attribution 4.0 International License.
















