Monitoring CIDBA – Acraquia cattle grazing through wireless sensor networks
DOI:
https://doi.org/10.54943/rcsxxi.v4i2.553Keywords:
Cattle, behaviour, grazing, wireless sensor networksAbstract
The objective of this work was to understand the grazing behavior of cattle at the Acraquia Cattle Research and Development Center (CIDBA) of the National University of Huancavelica, through wireless sensor networks. To do this, a wireless sensor network device connected to a web application (in charge of managing the information captured by the device) was designed, built and implemented. This system (device and web application) included sensor nodes in each cattle (collar with its respective power sources) and a monitoring station, which allowed collecting real-time data on the location, movements and behavior of the cattle. The information obtained was processed and analyzed to know the movement, grazing time, drinking times and sleeping time of the CIDBA cattle. The following values were found as the general average for the variables under study: displacement = 276 meters, grazing time = 8.26 hours, sleeping time = 11.35 hours and the cows' drinking time ranged between 08:55 hours and 10:05 hours in the morning and from 12:59 hours to 14:15 hours in the afternoon. On the other hand, the results show the effectiveness of the system in generating accurate and useful data for decision making in grazing management. Likewise, challenges associated with geographic and climatic conditions, as well as maintenance of equipment in the field, were identified. In conclusion, the use of wireless sensor networks represents an innovative and efficient tool to improve grazing management in livestock systems, contributing to sustainable development and the conservation of natural resources. It is recommended to strengthen the technological infrastructure, train users and promote integration with sustainable management programs.
Downloads
References
Anderson, P., Smith, J., & Brown, L. (2013). Advances in GPS technology for cattle tracking. Journal of Animal Science, 91(2), 456-469.
Arce, A. I. C., Tech, A. R. B., Silva, A. C. D. S., & Costa, E. J. X. (2009). Monitorización de rebaños de bovinos a través de redes de sensores inalámbricos. Archivos de zootecnia, 58(222), 253-263.
Benítez, D., Ramírez, A., Díaz, M., Ray, J., Guerra, J., & Vegas, A. (2007). Comportamiento de machos vacunos en un sistema racional de pastoreo en el Valle del Cauto. Revista Cubana de Ciencia Agrícola, 41(3), 227-230.
Brown, R., & Taylor, H. (2020). Rotational grazing and technology: A winning combination. Journal of Sustainable Agriculture, 42(1), 34-47.
Fernández, J., López, E., & Vásquez, D. (2021). Innovative practices in Andean cattle systems. Revista Andina de Ganadería, 35(2), 45-57.
Fundora, O., Tuero, O., González, M. E., Rivadineira, W., Alonso, F., & Vera, A. M. (2007). Estudio comparativo de la conducta alimentaria de búfalos de río y vacunos de la raza Siboney de Cuba en la etapa de ceba. Revista Cubana de Ciencia Agrícola, 41(3), 243-247.
García, R., Fernández, A., & López, M. (2015). Patterns of cattle grazing using wireless sensors. Agricultural Systems, 136, 95-102.
Guzmán, C., & Herrera, L. (2021). Resilience through technology in rural communities. Technology and Society, 15(1), 67-81.
Herrera, R., & Vargas, P. (2022). Adopting IoT for sustainable cattle farming in Latin America. Journal of Agriculture and Technology, 75(4), 193-207.
Johnson, D., & White, C. (2020). Optimizing livestock production through data-driven decisions. Journal of Agricultural Science, 68(1), 22-33.
Jones, H., Miller, D., & Wilson, T. (2017). Environmental monitoring using wireless sensors in livestock systems. Journal of Climate Research, 45(3), 221-235.
López, G., Martínez, C., & Ortiz, F. (2020). Impact of grazing management on soil conservation. Soil and Environment, 12(4), 330-345.
Martínez, H., & Gómez, A. (2019). Economic analysis of wireless sensor networks in livestock. Agricultural Economics, 59(2), 85-98.
Nagl, L., Schmitz, R., Warren, S., Hildreth, T. S., Erickson, H., & Andresen, D. (2003, September). Wearable sensor system for wireless state-of-health determination in cattle. In Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No. 03CH37439) (Vol. 4, pp. 3012-3015). IEEE.
Ortiz, R., García, M., & Paredes, S. (2022). Sustainable livestock in rural highlands. Journal of Rural Studies, 89(3), 90-102.
Polania Ortiz, Y. E. (2012). Movimiento De Vacunos En Un Paisaje Arbolado Y Su Relación Con El Gasto De Energía.
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Rivadeneira Torres, W. A. (2012). Comparación de Conducta Alimentaria Entre Búfalos de Rio (Bubalus Bubalis) y Bovinos (Bos indicus), Bajo un Sistema de Alimentación" AD LIBITUM" y en Confinamiento Total (Bachelor's thesis, Escuela Superior Politécnica de Chimborazo).
Rodríguez, P., Gómez, J., & Fernández, E. (2018). Animal health monitoring using IoT technologies. Veterinary Journal, 203(5), 210-220.
Smith, L., Johnson, K., & Taylor, P. (2019). Wireless networks in modern cattle farming: A review. Livestock Science, 208, 115-125.
Soca, P. M., Cabrera, M. R., & Bruni, M. A. (2007). Nivel de suplementación, ganancia de peso vivo y conducta de vacunos en crecimiento bajo pastoreo de campo natural. Agrociencia Uruguay, 11(1), 1-10.
Wilson, J., Taylor, M., & Rodríguez, L. (2021). Technological advances in grazing pressure assessment. Journal of Environmental Science, 56(3), 123-137
Published
How to Cite
-
Abstract295
-
PDF (Español (España))141
-
HTML (Español (España))18
Issue
Section
License
Copyright (c) 2024 Rufino Paucar Chanca, Javier Camilo Poma Palacios, Marco Antonio Espinoza Castillo

This work is licensed under a Creative Commons Attribution 4.0 International License.
















