Revista de Investigación Científica Siglo XXI (2023) Vol. 3, Núm. 2, pp. 24 - 35 https://doi.org/10.54943/rcsxxi.v3i2.348

ARTÍCULO ORIGINAL

Evaluación de la piedra termal como cimentación en la interacción suelo-estructura en edificaciones medianas

Evaluation of thermal stone as a foundation in soil-structure interaction in medium-sized buildings

Paucar Ch. Fortunato¹ • De La Cruz, David¹ • Taipe, Miguel¹

Recibido: 03 de Junio del 2023 / Aceptado: 16 de Julio del 2023

RESUMEN

El presente estudio tiene por objetivo determinar la influencia de la piedra termal como cimentación en la interacción suelo-estructura, para ello se ha extraído las muestras de piedra termal in situ que posteriormente fueron ensayados en los laboratorios de la Escuela Profesional de Ingeniería Civil de la Universidad Nacional de Huancavelica para la determinación de los módulos de elasticidad, densidad, humedad saturada, ángulos de fricción y cohesión, también de la misma forma las propiedades de una edificación convencional de mediana altura, los cuales fueron procesados para determinar la capacidad de carga de piedra termal mediante el método Xiao-Li Yang y Jian-Hua Yin para suelos rígidos, los modelos dinámicos propuestos por Villarreal (2006), para determinar los coeficientes de rigidez tanto en estado saturado, seco y por último con los datos de este último se realizó un análisis dinámico de una edificación tipo dual de cinco niveles, considerando interacción suelo-estructura con la ayuda del programa SAP 2000, obteniendo los siguientes resultados: la capacidad de carga de la piedra termal estado seco es 4.42 kg/cm² y estado saturado 4.19 kg/cm², concluyendo que no influye significativamente en los resultados, con lo que respecta a los coeficientes de rigidez del estado saturado son mayores en mínimas proporciones, con mayor diferencia en el método Sargsian y menor en Barkan, llegando a la conclusión de que no influye significativamente en los resultados.

Palabras clave: piedra termal, análisis dinámico, interacción suelo-estructura, modelos dinámicos, coeficiente de rigidez.

ABSTRACT

The present study aims to determine the influence of thermal stone as a foundation in the soil-structure interaction, for this purpose, samples of thermal stone were extracted in situ and subsequently tested in the laboratories of the Professional School of Civil Engineering of the National University of Huancavelica to determine the modulus of elasticity, density, saturated humidity, friction angles and cohesion, also in the same way the properties of a conventional medium height building, which were processed to determine the load capacity of thermal stone using the Xiao-Li Yang and Jian-Hua Yin methods for rigid soils, the dynamic models proposed by Villarreal (2006), to determine the stiffness coefficients in both saturated and dry states, and finally, with the data of the latter, a dynamic analysis of a five-story dual type building oriented to lodging was performed, considering soil-structure interaction with the help of the SAP 2000 program, obtaining the following results: the load capacity of the thermal stone in dry state is 4.42 kg/cm2 and saturated state 4.19 kg/cm2, concluding that it does not significantly influence the results, with respect to the stiffness coefficients of the saturated state they are greater in minimum proportions, with greater difference in the Sargsian method and smaller in Barkan, concluding that it does not significantly influence the results.

Keywords: thermal stone, dynamic analysis, soil-structure interaction, dynamic models, stiffness coefficient.

1. INTRODUCCIÓN

A través de la ingeniería sísmica y el estudio de zonas de alto riesgo, se diseñaron estructuras que se comporten adecuadamente ante la acción de fuertes terremotos, minimizando las pérdidas humanas. Entre estos métodos y técnicas se destaca el uso de funciones de fragilidad sísmica, la interacción dinámica suelo-estructura y la consideración de estructuras de aislamiento de base. El uso de funciones de fragilidad sísmica se basa en determinar un índice de fragilidad en función de las propiedades de la edificación, a partir del cual se estima el daño que puede causar un evento sísmico (Rondon y Cho, 2009).

- David De La Cruz Palomino daviddelacruz140@gmail.com
 - ¹ Ingeniero Civil titulado en la Universidad Nacional de Huancavelica, Huancavelica, Perú.

Para el aislamiento sísmico, se ha propuesto instalar una serie de dispositivos (aisladores) horizontalmente flexibles y verticalmente rígidos entre el suelo de cimentación y la estructura (Piscal y López, 2019). La interacción suelo-estructura es la cantidad de efectos cinemáticos e inerciales generados entre una estructura y el suelo bajo carga dinámica (Covolt, 2016). Las interacciones dinámicas suelo-estructura se definen por dos efectos simultáneos: interacciones cinemáticas e interacciones inerciales. El componente cinemático de la interacción depende de la relación entre la rigidez del suelo y la de la cimentación. Si los cimientos del edificio se consideran indeformables, la respuesta de la superestructura depende sólo de las propiedades de la propia superestructura, es decir, masa, rigidez y amortiguación (Espinoza et al., 2018). Por el contrario, si los cimientos del edificio se consideran deformables, es necesario analizar tres efectos comúnmente asociados con la interacción suelo-estructura: efectos de sitio, interacciones cinemáticas e interacciones inerciales (Gamón et al., 2021).

La interacción suelo-estructura tiene varios efectos en los edificios. El aumento en el período fundamental de vibración (Farghaly y El-Khamisy, 2018), el aumento o disminución de la amortiguación y el cambio en los requisitos de ductilidad estructural son causados básicamente por interacciones inerciales basadas en la inercia v elasticidad del sistema acoplado (Modi y Shah, 2016). Por lo tanto, si la base es suficientemente rígida, se reducirán el movimiento de traslación. la inclinación y la torsión de la base. Por otro lado, el suelo no es infinitamente duro, por lo que puede absorber parte de la energía liberada durante un terremoto. Esto se debe a la estructura común del suelo en el trabajo. Esto representa una fuente adicional de disipación de energía que reduce la respuesta de la estructura, por lo que la deformación que se debe sufrir para disipar la energía sísmica es menor que si no hubiera interacción (Guzmán et al., 2012).

Sin embargo, otros autores como (Villarraga et al., 2006) señalan que puede ser importante considerar la interacción suelo-estructura en edificaciones de baja y media altura sobre suelos de media y alta rigidez. Incluso en edificios de media altura, puede producirse resonancia con el suelo porque el período del suelo y la estructura son cercanos. Para este análisis, los autores proponen un parámetro R. Se define como la relación entre los períodos de vibración fundamental de la estructura y el suelo. A medida que este parámetro se aproxima a la unidad, la probabilidad de que el edificio resuene con el suelo aumenta, lo que da como resultado una aceleración del sistema significativamente amplificada. Por consiguiente, el presente estudio tiene como objetivo determinar la influencia de la piedra termal como cimentación en la interacción suelo-estructura en edificaciones de mediana altura.

2. MATERIAL Y MÉTODOS

El área de estudio del presente estudio se ubica en el departamento, provincia y distrito de Huancavelica.

Dicha investigación es de tipo aplicada, nivel descriptivo – explicativo, método observacional – explicativo y diseño no experimental – transversal – descriptivo. Se recolecto las muestras en la cantera de piedra termal de Paturpampa – Huancavelica. Dichas muestras fueron extraídas de forma intencionada de un lote escogido de 160 m². Del área de estudio se ha extraído las muestras de ensayo de forma aleatoria que en formas cilíndricas in situ con el equipo de extracción diamantina para rocas. Se extrajo muestras tipo cilíndricas para determinar humedad saturada, peso por unidad de volumen, módulo de elasticidad estático, relación de Poisson del núcleo en compresión (ASTM-C469), ensayo triaxial (ASTM D-2850-70). Para la técnica de procesamiento de datos se utilizó el programa SAP 2000.

Figura 01. Vista en planta del planteamiento arquitectónico.

Nota: Elaboración propia.

Figura 02. Vista frontal y corta transversal.

Nota: Elaboración propia.

Referente al predimensionamiento de elementos estructurales, se desarrolla los criterios y recomendaciones prácticas para el dimensionamiento de los elementos estructurales principales, teniendo en cuenta que son utilizados para edificaciones convencionales de mediana altura, con cargas vivas no excesivas y con las condiciones sísmicas del Perú.

Figura 03. Esquema general de predimensionamiento.

3. RESULTADOS

El ensayo de humedad saturada se realizó con el fin de determinar la capacidad de absorción máxima del agua y los resultados se muestra en la tabla 01.

Tabla 01

Humedad saturada.

ENSA	YO:	HUMEDAD SA	TURADA						
NORM	1A:	STANDARD	STANDARD						
LABO	RATORIO:	Escuela Profesio	onal de ingenier	ría Civil-Hvca.					
FECH	A:	01/11/2021							
MUES	STRA:	N° 01, N° 02, N	° 03						
REVIS	SADO:	Laboratorio de n	necánica de sue	elos (EPICH-HVCA)					
	DIME	NSIONES	CARAC	CTERISTICAS	RESULTADOS				
\mathbf{N}°	ALTURA	DIAMETRO	PESO	PESO	AGUA SA	TURADA			
	(cm)	(cm)	SECO (gr)	SATURADO (gr)	(g	r)			
1	5	7	332.44	372.41	39.97	12.02%			
2	5	7	333.5	371.35	37.85	11.35%			
3	5	6.95	6.95330.4373.242.812.95%						
		PR	OMEDIO			12.11%			

Nota: Elaboración propia.

Los resultados del ensayo sobre la densidad bruta saturada se muestran en la tabla 02.

Tabla 02

Densidad bruta saturada.

ENSAYO:		DENSIDAI	DENSIDAD BRUTA					
NORMA:		ASTM -C29						
LABORATORI	IO:	Escuela Profesional de Ingeniería Civil-Hvca.						
FECHA:		04/11/2021						
MUESTRA:		M03/M08/N	M09					
REVISADO:		Laboratorio	de mecánica de	suelos (EPICH-	HVCA)			
MUESTRA	PESO (KG)	ALTURA (CM)	ALTURA DIÁMETRO VOLUMEN PESO ESPECÍFICO (CM) (CM) (KG/CM3) (KG/M3)					
1	366.3	4.8	6.2	144.91	2527.76			
2	418.946	5	6.5	165.91	2525.13			
3	430.364	5.3	6.4	170.50	2524.20			
4	400.796	4.9	6.5	162.59	2465.04			
5	373.527	4.9	4.9 6.3 152.74 2445.50					
6	441.914	5.5	5.5 6.4 176.93 2497.69					
		PROMED	ΙΟ		2497.55			

Nota: Elaboración propia.

Los resultados del ensayo sobre la densidad bruta saturada se muestran en la tabla 03.

Tabla 03

Densidad bruta	seco				
ENSAYO: DENSIDAD BRUTA					
NORMA:		ASTM -C2	9		
LABORATOR	SIO:	Escuela Pro	ofesional de Inge	niería Civil-Hvca.	
FECHA:		04/11/2021	-		
MUESTRA:		M03/M08/	M09		
REVISADO:		Laboratorio	o de mecánica de	suelos (EPICH-H	VCA)
MUESTRA	PESO (KG)	ALTURA (CM)	DIÁMETRO (CM)	VOLUMEN (KG/CM3)	PESO ESPECÍFICO (KG/M3)
7	373.39	5.4	6.5	179.18	2083.84
8	375.44	5.5	6.3	171.44	2189.88
9	335.78	5.5	6.2	166.04	2022.24
10	430.25	5.5	6.6	188.16	2286.62
11	386.39	5.5	6.2	166.04	2327.03
12	366.93	5.1	6.4	164.06	2236.54
		PROMED	ΟΙΟ		2191.02

Nota: Elaboración propia.

Los resultados del ensayo de elasticidad y Poisson saturado se muestran en la tabla 04.

Tabla 04

Módulo de elasticidad y Poisson (saturado).

ENSAYO:	MÓDULO DE ELASTICIDAD, RELACIÓN DE POISSON						
NORMA:		ASTM -C469					
LABORATORIO:		Escuela	Profesio	onal de Ing	eniería Civil-Hy	vca.	
FECHA:		04/11/20	021				
MUESTRA:		M03/M0)8/M09				
REVISADO:	Laboratorio de mecánica de suelos (EPICH-HVCA)						
DESCRIPCIÓN	Р	L	А	δaxial	E (kg/cm2)	δlateral	Poisson
MUESTRA 01	1370.76	12	34.9	0.13	3625.55	0.05	0.35
MUESTRA 02	1371.94	12.1	36.3	0.12	3810.94	0.04	0.33
MUESTRA 03	1750 11.95 36.1 0.15 3861.96 0.05 0.33						
MUESTRA 05	1238.94 11.5 33.3 0.14 3056.16 0.05 0.36						
PROMEDIO DE RESULTADOS3588.650.34							

Nota: Elaboración propia.

Los resultados del ensayo de elasticidad y Poisson seco se muestran en la tabla 05.

Tabla 05

Módulo de elasticidad y Poisson (seco).

ENSAYO:	MÓDULO DE ELASTICIDAD, RELACIÓN DE POISSON
NORMA:	ASTM -C469
LABORATORIO:	Escuela Profesional de Ingeniería Civil-Hvca.
FECHA:	04/11/2021
MUESTRA:	M03/M08/M09

REVISADO:	Laboratorio de mecánica de suelos (EPICH-HVCA)						
DESCRIPCIÓN	Р	L	А	δaxial	E (kg/cm2)	δlateral	Poisson
MUESTRA 06	1050.23	11.9	35.9	0.08	4351.58	0.03	0.38
MUESTRA 07	1684.9	11.8	36.1	0.15	3671.62	0.05	0.33
MUESTRA 08	1084.81	12	37	0.1	3518.30	0.03	0.32
MUESTRA 09	1305.31	11.9	35.9	0.13	3328.30	0.06	0.47
PROMEDIO DE RESULTADOS3717.450.37							0.37

Nota: Elaboración propia.

Los resultados del ensayo de triaxial (angulos de friccion y cohesion) saturada se muestran en la tabla 06.

Tabla 06

Resumen de los ángulos de fricción y cohesión de muestra saturada.

ENSAY):	TRIAXIAL TIPO U	U					
NORMA	:	ASTM D2850-95 / AASHTO T296-94						
LABORA	ATORIO:	Escuela Profesional de Ingeniería Civil-Hvca.						
FECHA:		04/11/2021	-					
MUEST	RA:	M06/M02/M07						
REVISA	DO:	Laboratorio de mecá	nica de suelos ((EPICH-HVCA)				
MUESTR	A SATURADA			· · ·				
		PRESION DE	ESFUERZO	ÁNGULODE				
GRUPO	DESCRIPCIÓN	CONFINAMIENTO	DE FALLA	FRICCIÓN (Ø)	COHESIÓN			
					(C)			
01	MUESTRA 01	50.2	4627.4					
01	MUESTRA 02	100.9	5055.9	55.1	666.11			
	MUESTRA 03	200.2	6201.3					
0.2	MUESTRA 04	49.5	4067.6					
02	MUESTRA 05	99.9	4955.3	56.1	610.56			
	MUESTRA 06	199.4	6141.4					
	MUESTRA 07	49.5	4491.8					
03	MUESTRA 08	100.5	4966.7	55.9	630.4			
	MUESTRA 09	200.7	6170					
	MUESTRA 10	49.9	4505.2					
04	MUESTRA 11	100.1	4950.56	55.5	625.4			
	MUESTRA 12	199.8	6200					
	MUESTRA 13	49.8	4480.5					
05	MUESTRA 14	100.6	4998.7	55.6	660.4			
	MUESTRA 15	199.7	6150					
0.6	MUESTRA 16	50.6	4486.4					
06	MUESTRA 17	100.1	4950.6	54.9	660.5			
	MUESTRA 18	200.3	6165					

Nota: Elaboración propia.

Los resultados del ensayo de triaxial (ángulos de fricción y cohesión) seca se muestran en la tabla 07.

Tabla 07

Resumen de los ángulos de fricción y cohesión de muestra seca.

ENSAY	ENSAYO: TRIAXIAL TIPO UU							
NORM	A:	ASTM D2850-95 / AASHTO T296-94						
LABOR	RATORIO:	Escuela Profesional de	e Ingenieria Civil-H	vca.				
FECHA		04/11/2021	C					
MUEST	RA:	M03/M08/M09						
DEVIC								
REVISA	ADU:	Laboratorio de mecani	ica de suelos (EPIC	H-HVCA)				
		MUEST	TRA SECA					
GRUPO	DESCRIPCION	PRESION DE CONFINAMIENTO	ESFUERZO DE FALLA	ÁNGULO DE FRICCIÓN (Ø)	COHESIÓN (C)			
	MUESTRA 01	50.8	5038					
01	MUESTRA 02	100.1	5118.9	52.3	779.58			
01	MUESTRA 03	198.6	6193.2					
	MUESTRA 04	48	5010.6					
02	MUESTRA 05	99.8	5200.5	53.4	750.5			
02	MUESTRA 06	199.4	6200.4					
	MUESTRA 07	49.9	5024					
03	MUESTRA 08	100.2	5330.6	53.1	770.7			
05	MUESTRA 09	202.8	6150.4					
	MUESTRA 10	49.9	5120					
04	MUESTRA 11	99.5	5230	53.5	770.1			
	MUESTRA 12	201.4	6050					
	MUESTRA 13	49.9	5150					
05	MUESTRA 14	100.2	5260.4	53.7	750.4			
	MUESTRA 15	202.8	6100.2					
_	MUESTRA 16	49.9	5099					
06	MUESTRA 17	100.2	5400.5	52.8	780.7			

Nota: Elaboración propia.

MUESTRA 18

La obtención de los coeficientes de rigidez se desarrolló para los 4 modelos dinámicos propuestos (Barkan. Ilichev, Sargsian y Norma Rusa). Para los cuales se utilizó características del concreto, piedra termal y edificación, en las tablas 08, 09, 10, 11, 12, 13, 14, 15, 16 y 17 se muestra los resultados de coeficientes de rigidez por cada tipo de zapata.

Tabla 08

Coeficiente de rigidez de piedra termal (muestra saturada-zapata 01).

202.8

ZAPATA 01							
modelo dinámico	Kx (T/m)	Ky (T/m)	Kz (T/m)	Kqx (T.m)	Kφy (T.m)	Kψz (T.m)	
Barkan	103934.067	103934.067	130704.964	19605.745	19605.745	-	
llichev	192066.303	192066.303	68593.853	11019.981	11019.981	-	
Sargsian	24859.112	24859.112	73477.681	7964.731	7964.731	-	
Norma Rusa	a 153702.300	153702.300	219574.715	36595.786	36595.786	36595.786	
Nota: Elaborac	ión propia						

5990.8

Nota: Elaboración propia.

Tabla 09

modelo			ZA	PATA 02		
dinámico	Kx (T/m)	Ky (T/m)	Kz (T/m)	Køx (T.m)	Кфу (T.m)	Kψz (T.m)
Barkan	54365.984	54365.984	116227.885	18962.061	18962.061	-
llichev	265797.556	265797.556	97661.279	26092.871	26092.871	-
Sargsian	32412.317	32412.317	95803.175	30011.894	30011.894	-
Norma Rusa	215032.442	215032.442	307189.203	147962.799	147962.799	147962.799

Coeficiente de rigidez de piedra termal (muestra saturada-zapata 02).

Nota: Elaboración propia.

Tabla 10

Coeficiente de rigidez de piedra termal (muestra saturada-zapata 03).

modelo		ZAPATA 03							
dinámico	Kx (T/m)	Ky (T/m)	Kz (T/m)	Køx (T.m)	Кфу (Т.m)	Kψz (T.m)			
Barkan	77152.967	77152.967	208120.129	101141.697	101141.697	-			
llichev	307701.762	307701.762	114549.064	38231.552	38231.552	-			
Sargsian	36408.205	36408.205	107614.079	14114.650	14114.650	-			
Norma Rus	a 250235.707	250235.707	357479.581	72091.715	72091.715	72091.715			
N. (• /								

Nota: Elaboración propia.

Tabla 11

Coeficiente de rigidez de piedra termal (muestra saturada-zapata 04).

modelo	ZAPATA 04							
dinámico	Kx (T/m)	Ky (T/m)	Kz (T/m)	Kφx (T.m)	Kφy (T.m)	Kψz (T.m)		
Barkan	51223.659	51223.659	126258.559	35897.958	35897.958	-		
llichev	290624.706	290624.706	107639.036	32955.210	32955.210	-		
Sargsian	34802.757	34802.757	102868.754	21855.222	21855.222	-		
Norma Rusa	235862.592	235862.592	336946.560	110069.210	110069.210	110069.210		
N								

Nota: Elaboración propia.

Tabla 12

Coeficiente de rigidez de piedra termal (muestra saturada-zapata 05).

modelo	ZAPATA 05						
dinámico	Kx (T/m)	Ky (T/m)	Kz (T/m)	Kφx (T.m)	Кфу (T.m)	Kψz (T.m)	
Barkan	55596.943	55596.943	248206.656	43902.165	43902.165	-	
llichev	426527.389	426527.389	163501.894	88343.838	88343.838	-	
Sargsian	46838.156	46838.156	138442.559	189121.973	189121.973	-	
Norma Rusa	351113.124	351113.124	501590.177	1053548.367	1053548.367	1053548.367	

Nota: Elaboración propia.

Tabla 13

Coeficiente de rigidez de piedra termal (muestra seca-zapata 01).

modelo	ZAPATA 01						
dinámico	Kx (T/m)	Ky (T/m)	Kz (T/m)	Køx (T.m)	Кφу (Т.m)	Kψz (T.m)	
Barkan	101035.739	101035.739	130704.964	19605.745	19605.745	-	
llichev	196167.133	196167.133	70341.262	11265.293	11265.293	-	

Sargsian	26040.883	26040.883	89621.376	8454.147	8454.147	-
Norma Rusa	159217.734	159217.734	227453.906	37908.984	37908.984	37908.984
	, .					

Nota: Elaboración propia.

Tabla 14

Coeficiente de rigidez de piedra termal (muestra seca-zapata 02).

modelo	ZAPATA 02						
dinámico	Kx (T/m)	Ky (T/m)	Kz (T/m)	Køx (T.m)	Kφy (T.m)	Kψz (T.m)	
Barkan	52849.922	52849.922	116227.885	18962.061	18962.061	-	
llichev	271967.510	271967.510	100365.187	26725.817	26725.817	-	
Sargsian	33953.157	33953.157	116851.978	31856.063	31856.063	-	
Norma Rusa	222748.639	222748.639	318212.342	153272.278	153272.278	153272.278	

Nota: Elaboración propia.

Tabla 15

Coeficiente de rigidez de piedra termal (muestra seca-zapata 03).

modelo	ZAPATA 03						
dinámico	Kx (T/m)	Ky (T/m)	Kz (T/m)	Kφx (T.m)	Кφу (Т.т)	Kψz (T.m)	
Barkan	75001.462	75001.462	208120.129	101141.697	101141.697	-	
llichev	315121.511	315121.511	117836.759	39195.517	39195.517	-	
Sargsian	38139.005	38139.005	131257.841	14981.966	14981.966	-	
Norma Rusa	259215.133	259215.133	370307.333	74678.646	74678.646	74678.646	

Nota: Elaboración propia.

Tabla 16

Coeficiente de rigidez de piedra termal (muestra seca-zapata 04).

modelo	ZAPATA 04						
dinámico	Kx (T/m)	Ky (T/m)	Kz (T/m)	Køx (T.m)	Kφy (T.m)	Kψz (T.m)	
Barkan	49795.225	49795.225	126258.559	35897.958	35897.958	-	
llichev	297529.415	297529.415	110685.744	33773.726	33773.726	-	
Sargsian	36457.236	36457.236	125469.927	23198.179	23198.179	-	
Norma Rusa	244326.256	244326.256	349037.509	114018.919	114018.919	114018.919	
Note: Elaboració	ón naonio						

Nota: Elaboración propia.

Tabla 17

Coeficiente de rigidez de piedra termal (muestra seca-zapata 05).

modelo			ZA	PATA 05		
dinámico	Kx (T/m)	Ky (T/m)	Kz (T/m)	Køx (T.m)	Кфу (Т.m)	Kψz (T.m)
Barkan	54046.554	54046.554	248206.656	43902.165	43902.165	-
llichev	437715.198	437715.198	168564.598	90767.882	90767.882	-
Sargsian	49064.783	49064.783	168859.611	200743.124	200743.124	-
Norma Rusa	363712.423	363712.423	519589.176	1091353.76	1091353.76	1091353.765
N (F1.1	<i>,</i> .					

Nota: Elaboración propia.

4. DISCUSIÓN

Con base en los resultados obtenidos, prediciendo que la piedra termal como cimentación no tienen un efecto significativo en las interacciones suelo-estructura en edificios de tamaño mediano en la ciudad de Huancavelica. Estos resultados hacen referencia a Coyolt (2016), quien encontró que las interacciones suelo-estructura tienen un mayor impacto en suelos blandos, pero no en suelos duros como la piedra termal.

Teniendo en cuenta el hecho de que la piedra termal como cimentación en un estado seco y saturado afecta significativamente la capacidad de carga del suelo en edificios de tamaño mediano, esto se debe a que Dutta y Koushik (2004) sugieren un aumento en la fuerza de corte sísmica de los cimientos debido a la flexibilidad del suelo disminuye totalmente a medida que aumenta la rigidez del suelo, lo que muestra que la fuerza de corte como base de cimentación de la piedra termal en el estado seco es menor que la fuerza de corte en el estado saturado, lo que no se puede especificar es el ejemplar de zapatas utilizadas, porque según Lajo (2014), es importante que las condiciones de apoyo sean adecuadas a las características del suelo, porque trabajar con supuestos introducirá movimientos y fuerzas adicionales que no son predecibles.

Para el resultado en donde la piedra termal se utiliza como cimentación no afecta significativamente en el coeficiente de rigidez del suelo en edificios medianos, son relacionados con Villarreal (2006) y Garay (2017), donde predicen que existe un efecto menor de interacción del suelo-estructura se da en el modelo dinámico de Barkan, pero no está de acuerdo en que el mayor impacto según ellos es en Ilichev.

5. CONCLUSIONES

Se determinó que el porcentaje de humedad de la piedra termal no influye significativamente en la interacción sueloestructura en edificaciones de mediana altura, con una variación mínima de los resultados saturados y secas.

Se determinó que existe influencia de la piedra termal como cimentación en estado seco y saturado con respecto a la capacidad de carga de suelo (piedra termal) en edificaciones de mediana altura. Existe influencia de la piedratermal como cimentación en estado seco y saturado con respecto al coeficiente derigidez del suelo (piedra termal) para los modelos dinámicos D.D. Barkan – O.A. Savinov, V.A Ilichev, A.E. Sargsian y Norma Rusa SNIP 2.02.05-87.

No existe influencia de la piedra termal como cimentación en el análisis dinámico de las derivas de entrepiso en edificaciones de mediana altura.

6. REFERENCIA

- Coyolt, C. I. (2016). "Interacción Dinámica Suelo Estructura", tesis de maestría, Universidad Nacional Autónoma de México. Disponible en: https://repositorio.unam.mx/ contenidos/99983.
- Dutta, S. C., & Koushik, B. (2004). Respuesta de edificios de baja altura bajo exitación sísmica del suelo incorporando la interacción suelo-estructura. Bengal.
- Espinoza, G., Benedetti, F., Álvarez P., y Bonilla, E. (2018). "Influence of the seismic excitation frequencies content on the behavior of a tunned mass damper in low rise building considering Soil-Structure Interaction", Latin American Journal of Solids and Structures, vol. 15, n°. 8.
- Farghaly, A. A., y El-Khamisy, A. M. (2018). "Seismic Performance of Raft Foundation of H. R. B. with SSI Effect", American Journal of Engineering Research (AJER), n°. 5, pp. 147–151.
- Gamón, R., Reyes, O., Fundora, N., y Martínez, J. O. (2021). "Interacción dinámica sueloestructura en edificaciones con tipología mixta ubicadas en zona de bajo riesgo sísmico", en Convención 2021. Universidad Central "Marta Abreu" de Las Villas. Simposio Internacional de Construcciones.

Disponibleen:https://convencion.uclv.cu/ es/event/simposiointernacionaldeconstru cciones108/track/interacciondinamicasue loestructuraenedificacionescontipologia mixtaubicadasenzonadebajoriesgosismic o-3493.

Guzmán, F. D. D., Barreras, F. E., Vergara, R. S., y López, C. I. H. (2012). "Respuesta dinámica de un edificio considerando el efecto de interacción suelo-estructura", Monografías de ingeniería sísmica. A.H. Barbat, Ed., 2012, p. 145.

- Modi, M., y Shah, N. (2016). "Raft Foundation with SSI and without SSI Effects on Different Story", International Journal of Engineering Development and Research (IJEDR), vol. 4, n°. 2, pp. 764-766.
- Piscal, C. M., y Lopez, F. (2019).
 "Comparación de las dos metodologías de análisis y diseño más recientes de ASCE 7, para el análisis de su posible empleo en edificaciones con aislamiento sísmico de base en Colombia", Revista Científica Ingeniería y Desarrollo, vol. 37, n°. 1, pp. 57–70. doi.org/10.14482/inde.37.1.624.2
- Rondón, E. M., y Cho, G. C. (2009).
 "Estimación de las funciones de vulnerabilidad sísmica en edificaciones en tierra", Revista Científica Ingeniería y Desarrollo, vol. 5, n°. pp. 180–199.
- Villarreal, G. (2006). Interacción sísmica sueloestructura en edificaciones con zapatas aisladas. Lima.
- Villarraga, M. R., Pineda, M., Ramírez, A. F., Ramírez, C. E., Arango, J. D., Rodríguez, R. A., y Valencia, J. (2006). "Estudio paramétrico de los efectos de la interacción sísmica suelo estructura", IV Encuentro Nacional de Ingenieros de Suelos y Estructuras. Foro Internacional sobre Microzonificación Sísmica.