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En el presente artículo se reflexiona sobre la formación matemática de los estudiantes de 

ingeniería. Se toman algunas nociones de la teoría de los Espacios de Trabajo Matemático 

y la Modelización matemática. Para ilustrar las nociones teóricas expuestas se muestran 

algunas conexiones entre las teorías didácticas y un problema en el contexto de la 

Hidráulica presente en un libro de texto para ingeniería.  Se concluye que son importantes 

estos espacios de reflexión sobre la enseñanza y el aprendizaje de las matemáticas en la 

formación de ingenieros, estableciendo así oportunidades para mejorar su preparación 

académica.  
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This article reflects on the mathematical training of engineering students. Some notions 

are taken from the theory of Mathematical Working Spaces and Mathematical modelling. 

To illustrate the theoretical notions presented, some connections are shown between 

didactic theories and a problem in the context of Hydraulics presented in a textbook for 

engineering. It is concluded that these spaces for discussion between notions of 

Mathematics Didactics and notions of Engineering are important, thus establishing 

opportunities to advance in the teaching and learning of mathematics for engineering.  

 

 

INTRODUCCIÓN 

Es ampliamente aceptado que la matemática es útil para resolver problemas de ingeniería y que los 

estudiantes deben poder apercibir esa utilidad en su formación académica. Sin embargo, como señalan, 

Cosmes Aragón et al. (2024) desde la Matemática Educativa y en el marco de la formación de ingenieros 

nos preguntamos cómo puede abordarse teórica y metodológicamente la problemática de la formación 

de ingenieros, para que sea abordada, confrontada y estudiada desde la cientificidad. En el presente 

artículo presentamos algunas definiciones, reflexiones y ejemplos que nos dan luz para acercarnos a la 

formación de ingenieros.  

La formación matemática de ingenieros debe incluir el desarrollo competencias que les permitan 

afrontar de la mejor manera posible, situaciones de diversa índole, desde situaciones académicas propias 

de su formación, hasta situaciones que enfrentará como futuro profesional de la ingeniería. Al respecto, 

Alpers (2017) señala que una competencia fundamental en la formación matemática de ingenieros es la 

https://doi.org/10.54943/rq.v17i1.827
https://orcid.org/0000-0002-7518-9958


Importancia de los signos, los artefactos y la teoría en la formación matemática de ingenieros. Reflexiones desde la modelización 

matemática  

72 

 

de la modelización matemática, pues durante su formación y también en el ejercicio de su formación se 

enfrentan a la solución de problemas donde la modelización toma un rol clave.  

Por otra parte, la modelización matemática es una de las ocho competencias a promover en el contexto 

escolar (Niss y Hojgaard, 2019, p. 16), los autores definen la competencia de modelización matemática 

como:  

Esta competencia se centra en los modelos matemáticos y la modelización matemática, es decir, 

en el uso de las matemáticas para abordar cuestiones, contextos y situaciones extramatemáticas. 

La capacidad de construir dichos modelos matemáticos, así como de analizar y evaluar 

críticamente los modelos existentes o propuestos, teniendo en cuenta los objetivos, los datos, 

los hechos, las características y las propiedades del dominio extramatemático que se está 

modelando, es el núcleo de esta competencia. Implica relacionarse con los procesos clave del 

“ciclo de modelización” en sus diversas manifestaciones y navegar dentro de ellos y a través de 

ellos. (Traducción propia).     

En este sentido, se evidencia la importancia de la modelización matemática como una competencia a 

promover en el contexto de la formación de ingenieros. En adelante, desarrollaremos algunas nociones 

que consideramos claves en un proceso de modelización, pues permiten robustecer sus diversos procesos 

o ciclos. Para ello, nos proponemos reflexionar acerca del rol de los signos, los artefactos, la teoría y la 

modelización matemática en la formación de estudiantes de ingeniería. Los signos en el sentido de que 

potencian la visualización, los artefactos que potencian la construcción cognitiva de instrumentos y la 

teoría cuya utilidad es respaldar, justificar y brindar espacios de razonamiento sobre las producciones 

del estudiante al resolver problemas.   

ELEMENTOS TEÓRICO-METODOLÓGICOS 

Los signos, los artefactos y la teoría  

Peirce (1931, 2.228) define a un signo como “algo que representa algo en algún aspecto o capacidad” 

(Traducción propia). Es decir, el signo no define totalmente al objeto al cual se refiere, pero lo hace con 

respecto a una parte de él. En ingeniería los signos adquieren vital importancia, por lo que reflexionar 

sobre su funcionamiento es importante para la comprensión del contenido en cuestión. Los signos se 

encuentran formando parte de las distintas representaciones, los observamos en gráficas, en tablas, 

fórmulas, pero, además, se deben a significados asociados a diversas disciplinas por lo que los objetos 

que representan son de diversa naturaleza (Cosmes Aragón, 2020).  

Los signos a su vez posibilitan actividades cognitivas asociadas a la visualización matemática, 

generando así una génesis semiótica, al respecto, Kuzniak (2022, p. 13) considera que:  

La génesis semiótica asocia los signos y el representamen a la visualización. Explica la relación 

dialéctica entre las perspectivas sintáctica y semántica sobre los objetos matemáticos 

representados y organizados por los sistemas semióticos. La génesis semiótica confiere al 

representamen su condición de objetos matemáticos operacionales. De esta manera, establece 

los vínculos entre la función y estructura de los signos expresados. La perspectiva de abajo hacia 

arriba vinculada a esta génesis puede considerarse como un proceso de decodificación e 

interpretación de signos de un representamen dado a través de la visualización.  

Rabardel (1995) define a un artefacto como algo que ha sufrido alguna transformación por el ser humano 

y que tiene el potencial de ser utilizado para realizar alguna función determinada. En ingeniería, los 

artefactos toman diversas formas y adquieren diversos significados en el marco de su utilización. Los 

artefactos pueden ser de naturaleza simbólica o asociadas a tecnología digital. Por ejemplo, el uso de un 

artefacto simbólico “sumatorias de fuerzas” que permiten asegurarse del equilibrio de una estructura. O 

el uso de artefactos tecnológicos digitales como el caso de GeoGebra.  

Los artefactos a su vez posibilitan actividades cognitivas asociadas a la instrumentación de esquemas 

cognitivos, generando así una génesis instrumental, al respecto, Kuzniak (2022, p. 13) considera que:  

La génesis instrumental establece el vínculo entre los artefactos y los procesos de construcción 

que contribuyen a la realización del trabajo matemático. La perspectiva de abajo hacia arriba 
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describe las acciones mediante las cuales el usuario se apropia de las diversas técnicas asociadas 

al artefacto…Las herramientas digitales asociadas a las computadoras han revolucionado por 

completo la cuestión de los artefactos en las matemáticas y la educación matemática.  

En cálculo de varias variables, el concepto de plano es útil para comprender el significado de la derivada 

parcial, el uso de GeoGebra permite construir vectores y visualizar diversas propiedades. En el caso de 

los vectores 𝑨⃗⃗ =  3𝑖 + 2𝑗 − 3𝑘  y  𝑩⃗⃗ =  3𝑖 − 4𝑗 + 2𝑘 , en GeoGebra se puede visualizar que el producto 

cruz entre esos dos vectores es un vector que es perpendicular a los vectores dados.  

              𝐀⃗⃗ X𝐁⃗⃗  = |
𝑖 𝑗 𝑘
3 2 −3
3 −4 2

| =  |
2 −3

−4 2
| 𝑖 − |

3 −3
3 2

| 𝑗 + |
3 2
3 −4

| 𝑘  

𝐀⃗⃗ X𝐁⃗⃗ =  −8𝑖 − 15𝑗 − 18𝑘 

Al representar en GeoGebra los dos vectores y su producto cruz podemos mostrar la propiedad de que 

el vector resultante es un vector perpendicular a los dos dados, tal como se muestra en la Figura  

Figura 1  

Representación gráfica del producto cruz entre dos vectores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Posteriormente, ese vector resultaría útil para construir un plano. A su vez, la definición de plano es útil 

para la interpretación geométrica de la derivada parcial. 

La teoría permite fundamentar el uso de procedimientos y validar conclusiones desde pruebas que 

permiten procesos de razonamiento de validación en el sentido de Balacheff (1987).  

La teoría, la cual está presente en el referencial teórico, a su vez posibilita actividades cognitivas 

asociadas a la prueba desde el razonamiento de validación, generándose así una génesis discursiva, al 

respecto Kuzniak (2022, p. 13) señala que:  

La génesis discursiva de la prueba es el proceso mediante el cual las propiedades y resultados 

organizados en el referencial son accionados para estar disponibles para el razonamiento 

matemático y las validaciones discursivas, es decir, validaciones que van más allá de la 

verificación gráfica, empírica o instrumentada, pero que sin embargo podrían ser 

desencadenadas por éstas. 

Si bien, desde un punto de vista teórico, se hace indisoluble la relación entre los signos, los artefactos y 

la teoría con los procesos cognitivos que suceden cuando un sujeto diseña o resuelve una tarea, 

originando de esta manera las génesis que plantea Kuzniak. Para propósitos de este artículo el centro 
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está solamente en reflexionar sobre la importancia de los signos, los artefactos y el referencial teórico, 

vistos como elementos epistemológicos.  

Figura 2 

Herramientas epistemológicas. Elaboración propia. Basado en Kuzniak (2022)  

 

La modelización matemática 

Blum (2015) señala que la modelización matemática permite la enseñanza y aprendizaje de la 

matemática a través de realizar conexiones entre la matemática y el mundo extramatemático. Borromeo 

Ferri (2006) señala que una forma de diseñar y caracterizar el proceso de solución de un problema de 

modelización es utilizar ciclos de modelización. La autora propone seguir un ciclo (ver figura 3) que 

permite diseñar actividades de modelización y realizar una reconstrucción cognitiva del proceso de 

solución de un problema de modelización. A continuación, se definen cada una de las etapas y 

transiciones del ciclo de Borromeo Ferri.  

Figura 3 

Ciclo de modelización desde una perspectiva cognitiva. Adaptado de (Borromeo Ferri ,2006, p.92). 

 

 

 

 

 

 

 

 

 

 

 

 

De acuerdo a Borromeo Ferri (2006) la situación real se presenta a través de texto, imágenes, entre otras 

representaciones. Cuando el individuo aborda la tarea y realiza acciones que le permiten entenderla 

ocurre el pasaje de la situación real a la representación mental de la situación. La representación mental 

de la situación va a depender del estilo de pensamiento matemático del sujeto, realizando 

simplificaciones de la situación. Posteriormente, el sujeto idealiza la situación utilizando su 

conocimiento extramatemático posibilitando así el pasaje de la representación mental de la situación al 

modelo real. El modelo real es construido con base en la representación mental del individuo, la cual 
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externaliza a través de expresiones orales o diagramas. A continuación, se da el pasaje del modelo real 

al modelo matemático a través de un proceso de matematización con un fuerte apoyo en el conocimiento 

extramatemático del individuo. El modelo matemático que se construye se basa en representaciones 

externas y con un fuerte apoyo del conocimiento matemático. Posteriormente, el uso de competencias 

matemáticas se hace presente al pasar del modelo matemático a los resultados matemáticos. Los 

resultados matemáticos se obtienen al trabajar con una ecuación, una función, realizar interpretaciones 

de gráficos y demás actividades matemáticas. El pasaje de los resultados matemáticos a los resultados 

reales se obtiene al interpretar los resultados matemáticos. Se obtienen así los resultados reales al 

confrontar los resultados del trabajo con el modelo matemático y la situación real que se está modelando. 

Finalmente, se procede a la validación de los resultados al confrontar los resultados reales con la 

representación mental de la situación.  

Metodología 

Se utilizó una metodología cualitativa bajo un paradigma interpretativo. Para el desarrollo del trabajo se 

siguió el siguiente método: 

Revisión de antecedentes relacionados con la formación de ingenieros y la modelización matemática. 

Análisis documental relacionado con la teoría de los Espacios de Trabajo Matemático en cuanto a los 

signos, los artefactos y la teoría. 

Análisis documental relacionado con la modelización matemática.  

Concreción de la revisión teórica con la presentación y reflexiones de un ejemplo de la ingeniería.  

RESULTADOS 

Un ejemplo en el contexto de la Hidráulica 

Para mostrar un ejemplo concreto donde se visualicen los aspectos relacionados con conceptos asociados 

a los signos, los artefactos, las teorías y el ciclo de modelización, mostramos un ejemplo tratado en un 

libro de texto de ingeniería hidráulica donde se resuelve un problema del cálculo de la altura de un canal 

en la condición de un flujo uniforme. En la tabla 1 se muestran algunas definiciones relacionadas con el 

flujo uniforme. 

Tabla 1 

Conceptos de flujo uniforme en un canal. Tomado de (Chow, 1994, pp. 20-23). 

Concepto Definición 

Sección de canal Sección transversal de un canal, tomada en forma perpendicular a la 

dirección del flujo.   

Profundidad de flujo “y” Es la distancia vertical desde el punto más bajo de una sección del 

canal hasta la superficie libre.  

Nivel  Es la elevación o distancia vertical desde un nivel de referencia o 

datum hasta la superficie libre.  

Ancho superficial “T” Es el ancho de la sección del canal en la superficie libre.  

Área mojada “A” Es el área de la sección transversal del flujo perpendicular a la 

dirección de flujo.  

Perímetro mojado “P” Es la longitud de la línea de intersección de la superficie de canal 

mojada y de un plano transversal perpendicular a la dirección de flujo.  

Radio hidráulico “R” Es la dirección del área mojada con respecto a su perímetro mojado.  
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Profundidad hidráulica “D” Es la relación entre el área mojada y el ancho en la superficie.  

Factor de sección para el 

cálculo de flujo crítico “Z” 

Es el producto del área mojada y la raíz cuadrada de la profundidad 

hidráulica.  

 

El problema resuelto por el autor en el libro, es el siguiente: 

Problema del libro de texto: Hidráulica de canales abiertos (Chow, 1994, pp. 138-139). 

Un canal trapezoidal (ver figura 4), con 𝑏 = 20 pies, 𝑧 = 2, 𝑆 = 0.0016 y 𝑛 = 0.025, transporta un 

caudal de 400 𝑝𝑖𝑒𝑠3/𝑠. Calcule la profundidad y la velocidad normales.  

Figura 4 

Sección transversal del canal (Chow, 1994, p. 24) 

 

 

 

 

 

Solución dada por (Chow, 1994, pp. 138-139) 

A partir de la ecuación de flujo uniforme el autor procede a calcular la profundidad normal y la velocidad 

normal (Chow, 1994, p. 138).  

𝑉 = 
1.49

𝑛
 𝑅

2
3⁄ 𝑆

1
2⁄                  Ec. 1 

Donde: 𝑉 es la velocidad media en pies/s, 𝑅 es el radio hidráulico en pies, 𝑆 es la pendiente de la línea 

de energía, 𝑛 es el coeficiente de rugosidad.  

Por tanto, en su desarrollo y solución del problema, el autor realiza los siguientes cálculos 

El radio hidráulico en términos de la profundidad 𝑦,  resulta  𝑅 =
𝑦 (10+𝑦)

10+𝑦√5
 . El área mojada en términos 

de la profundidad 𝑦,  resulta  𝑅 = 𝑦 (20 + 2𝑦). La velocidad es, 𝑉 =
𝑄

𝐴
= 

400

𝑦 (20+2𝑦)
 

Utilizando los datos proporcionados en el problema y los cálculos realizados para el radio hidráulico, el 

área mojada y la velocidad en la ecuación de Manning (Ec. 1).   

400

𝑦 (20+2𝑦)
=

1.49

0.025
 [

𝑦 (10+𝑦)

10+𝑦√5
]
2

3⁄
(0.0016 )

1
2⁄               Ec. 2 

El autor señala que la ecuación anterior la soluciona para y por ensayo y error, obteniendo un valor de 

𝑦𝑛  =  3.36 𝑝𝑖𝑒𝑠. El área correspondiente es A= 89.8 pies2 y la velocidad normal es 𝑉𝑛 =
400

89.8
=

4.46 
𝑝𝑖𝑒𝑠

𝑠⁄  .  (Chow, 1994, pp. 138-139). 

Solución a la ecuación 2 por medio de GeoGebra  

A continuación, proporcionamos una solución a la ecuación de flujo uniforme del canal utilizando el 

artefacto simbólico digital GeoGebra, con fines de graficación cambiaremos la variable 𝑦 por la variable 

𝑥 de la ecuación dada en el libro, la estrategia que utilizaremos es asociar una función a la expresión 

izquierda de la igualdad que llamaremos 𝑓(𝑥) y otra función a la expresión derecha de la igualdad que 

llamaremos 𝑔(𝑥). Resultando las siguientes representaciones gráficas como se muestra en la figura. 
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Figura 5 

Representación de la gráfica 𝑓(𝑥)                         Representación de la gráfica 𝑔(𝑥) 

 

  

 

 

 

 

 

 

 

 

De tal manera que al solicitarle a GeoGebra que calcule los puntos de intersección de las funciones, 

resulta la siguiente representación mostrada en la figura.  

Figura 6 

Solución de la ecuación por intersección de las funciones 𝑓(𝑥) y 𝑔(𝑥). (Elaboración propia). 

 

 

Podemos notar que las soluciones obtenidas son 𝑥 =  −13.514 y 𝑥 =  3.356, pero al ser un problema 

de aplicación donde se está diseñando un canal, en este caso en el contexto de la hidráulica, se descarta 

la solución negativa, pues no se utilizan dimensiones negativas para el diseño del canal, esto dado que 

la 𝑥 (y en el problema original) es la profundidad de flujo y no existen canales con profundidad de flujo 

negativas, resultando así que la solución es 𝑥 =  3.356 𝑝𝑖𝑒𝑠 para la altura normal. Así, llegamos a la 

misma solución que la proporcionada por el autor del problema (Chow, 1994).  

Comentarios sobre el ejemplo 

En el problema anterior, podemos observar signos en las ecuaciones, las cuales son representadas en 

forma algebraica y son visualizadas en orden de poder calcular la altura y velocidad normal del canal. 

Los artefactos dependerán del resolutor, pues como se mencionó, pueden ser artefactos simbólicos, 

como puede ser el uso del artefacto fórmula y además de artefactos digitales como el uso de GeoGebra 
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para estimar los ceros de la función mediante el uso de sus herramientas para el cálculo simbólico y 

gráfico. La teoría se relaciona con la teoría propia de la hidráulica en la cual se sustentan las fórmulas 

utilizadas pero también en la teoría matemática que permite resolver la ecuación como son las raíces de 

una ecuación, ello también dependerá del resolutor o las prácticas del profesor, pues puede ser un uso 

variado de herramientas teóricas las que se utilicen en la solución del problema, desde una simple 

iteración al saber que los valores que cumplen son los que hacen cero la función, hasta métodos 

numéricos o el apoyo de métodos exactos como el método de Ruffini, según aplique.  

En términos de la modelización matemática, el modelo asociado al problema real es el de un canal, al 

cual se le debe calcular una profundidad normal, para ello, se deben tomar en cuenta datos del contexto 

extramatemático como son la rugosidad del canal y fórmulas asociadas al flujo uniforme, para 

posteriormente pasar al planteamiento del modelo matemático y su solución, la solución puede ser por 

diversos métodos, aquí presentamos la solución gráfica. Finalmente, los resultados deben ser validados 

e interpretados tomando en cuenta el contexto original asociado al canal.  

En un escenario de enseñanza, el profesor podría solicitar que los estudiantes realicen la toma de datos 

reales para algún canal de forma similar a la presentada. Posteriormente, el profesor se podría basar en 

las distintas etapas del ciclo de modelización presentadas por Borromeo Ferri (2006) para promover en 

los estudiantes el desarrollo de la modelización, pero también de la reflexión de sus propios procesos de 

solución.  

CONCLUSIONES  

Los signos, los artefactos y la teoría constituyen una base de herramientas epistemológicas sobre las 

cuales se sustenta la actividad de un ingeniero y que en conjunto con la modelización matemática 

permiten favorecer la emergencia de procesos cognitivos acordes a un estudiante de ingeniería 

matemáticamente competente. Los signos en ingeniería representan diagramas, ecuaciones, tabulaciones 

numéricas que posibilitan la visualización de los problemas, su interpretación y representación. Los 

artefactos potencian el uso adecuado de herramientas simbólicas o tecnológicas digitales para la 

elaboración de la tarea. La teoría posibilita el razonamiento de lo realizado por el estudiante.  

En la formación de un ingeniero las matemáticas deben ser promovidas para ser útiles en las actividades 

como estudiante, pero también como futuro profesional de la ingeniería, por lo que considerar las 

diversas herramientas (semióticas, instrumentales y discursivas) en contextos de modelación 

matemática, con las que puede ser formado matemáticamente, le favorecerá su buen desempeño 

académico y laboral. De esta manera, como señala Blum (2015), se estaría promoviendo una enseñanza 

de las matemáticas de calidad. Así mismo, se considera que estos espacios de reflexión son importantes 

para avanzar en el mejoramiento de la enseñanza y el aprendizaje de la matemática en ingeniería.  
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