Jeferson Moizés Lima; Vanessa Pâmela Tomelin; Luciane Mulazani dos Santos
83
Chueke, G. V.; Amatucci, M. (2015). O que é bibliometria? Uma introdução ao Fórum. Revista
Eletrônica de Negócios Internacionais (Internext), 10(2), 1–5.
Baccaglini-Frank, A. E., Santi, G., Del Zozzo, A., & Frank, E. (2020). Teachers’ Perspectives on the
Intertwining of Tangible and Digital Modes of Activity with a Drawing Robot for
Geometry. Education Sciences, 10(12), 387
Bolstad, O. H. (2023). Lower secondary students’ encounters with mathematical literacy. Math Ed
Res, 35, 237–253. https://doi.org/10.1007/s13394-021-00386-7
Demo, H., Garzetti, M., Santi, G., & Tarini, G. (2021). Learning Mathematics in an Inclusive and Open
Environment: An Interdisciplinary Approach. Education Sciences, 11(5),
199. https://doi.org/10.3390/educsci11050199
Ferretti, F., Santi, G. R. P., & Bolondi, G. (2022). Interpreting difficulties in the learning of algebraic
inequalities, as an emerging macro-phenomenon in Large Scale Assessment. Research in
Mathematics Education, 24(3), 367–389. https://doi.org/10.1080/14794802.2021.2010236
Moretti, V.; Panossian, M. L.; Moura, M. O. (2015). Educação, educação matemática e teoria cultural
da objetivação: uma conversa com Luis Radford. Educação e Pesquisa, 41(1), 243-260.
http://dx.doi.org/10.1590/S1517-97022015410100201
Pais, A. (2016). At the intersection between the subject and the political: a contribution to an ongoing
discussion. Educational Studies in Mathematics, 92, 347–359.
R CORE TEAM. (2022). R A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. Disponível em: https://www.R-project.org. Acesso em:
20 mai. 2024.
Radford, L. (2014). The Progressive Development of Early Embodied Algebraic Thinking. Mathematics
Education Research Journal, 26, 257–277.
Radford, L. (2018). Algunos desafíos encontrados en la elaboración de la teoría de la objetivación.
PNA, 12(2), 61-80. https://doi.org/10.30827/pna.v12i2.6965
Radford, L. (2021). Teoria da objetivação: uma perspectiva Vygotskiana sobre conhecer e vir a ser no
ensino e aprendizagem da matemática. Editora Livraria da Física.
Radford, L. (2022). Introducing equations in early algebra. ZDM Mathematics Education, 54, 1151–
1167.
Radford, L., Salinas-Hernández, U. & Sacristán, A.I. (2023). A dialogue between two theoretical
perspectives on languages and resource use in mathematics teaching and learning. ZDM
Mathematics Education, 55, 611–626.
Sabena, C. (2018). Multimodality and the Semiotic Bundle lens: A constructive resonance with the
Theory of Objectification. PNA, 12(4), 185-208.
Swidan, O., Fried, M. (2021), Focuses of awareness in the process of learning the fundamental theorem
of calculus with digital technologies, The Journal of Mathematical Behavior, 62.
https://doi.org/10.1016/j.jmathb.2021.100847
Uegatani, Yusuke & Nakawa, Nagisa & Kimura, Mitsuhiro & Fukuda, Hiroto & Otani, Hiroki. (2021).
The ad lib music session as a metaphor for Mathematics classroom activities in the Theory of
objectification: a phonetic analysis of laughter. In Inprasitha, M, Changsri, N., & Boonsena, N.
(Eds.). Proceedings of the 44th Conference of the International Group for the Psychology of
Mathematics Education, 4, 176-184. Khon Kaen, PME.
Vergel, R., Godino, J.D., Font, V. et al. (2023). Comparing the views of the theory of objectification
and the onto-semiotic approach on the school algebra nature and learning. Math Ed Res J 35,
475–496.